

ETUDE PRENORMATIVE SUR LES PERFORMANCES DES PANNEAUX A BASE DE BOIS SOUS CHARGE CONCENTREE SELON NF EN 12871

Laurent Le Magorou

3 décembre 2012

Avec le soutien de :

Siège social

10, avenue de Saint-Mandé 75012 Paris Tél +33 (0)1 40 19 49 19 Fax +33 (0)1 43 40 85 65

IBC Recherche Allée de Boutaut – BP 227 33028 Bordeaux Cedex Tél +33 (0)5 56 43 63 00 Fax +33 (0)5 56 43 64 80

www.fcba.fr

Siret 775 680 903 00017 APE 7219 Z Code TVA CEE : FR 14 775 680 903

SOMMAIRE

1.	Rappel de l'Objectif	8
	1.1 Le contexte	8
	1.2 L'objectif de cette étude	8
2.	Description synthétique de l'étude	10
	2.1 Choix du domaine d'application	10
	2.2 Élaboration du plan d'expérience	10
	2.3 Réalisation des essais	10
	2.4 Analyse et interprétation des résultats d'essais	11
	2.5 Élaboration et calage des modèles prédictifs	11
	2.6 Exploitation des modèles	11
3.	Le domaine d'application et le plan d'expérience	12
-	3.1 Les catégories d'usage	12
	3.2 Les panneaux retenus	12
	3.3 Le plan d'expérience	13
4.	Protocole d'essais	16
	4.1 Généralités	16
	4.2 Choix du point d'application de la charge concentrée	17
	4.3 Le cvcle de chargement	19
	4.4 Essai de choc de corps mou	19
5.	Traitement des résultats d'essais	20
	5.1 Rappel de l'EN 12871	20
	5.2 Méthodologie du traitement	20
	5.3 Synthèse des comportements observés	22
6.	Synthèse des résultats d'essais	26
	6.1 Généralités	26
	6.2 Panneau de particules P4, épaisseur 19 mm	27
	6.3 Panneau de particules P4, épaisseur 22 mm	29
	6.4 Panneau de particules P4, épaisseur 25 mm	31
	6.5 Panneau de particules P5, épaisseur 12 mm	33
	6.6 Panneau de particules P5, épaisseur 22 mm	35
	6.7 Panneau de particules P5, épaisseur 30 mm	37
	6.8 Panneau d'OSB/3, épaisseur 12 mm	39
	6.9 Panneau d'OSB/3, épaisseur 16 mm	41
	6.10 Panneau d'OSB/3, épaisseur 18 mm	43
	6.11 Panneau d'OSB/3, épaisseur 25 mm	45
	6.12 Panneau d'OSB/4, épaisseur 12 mm	47
	6.13 Panneau d'OSB/4, épaisseur 18 mm	49
	6.14 Panneau d'OSB/4, épaisseur 25 mm	51
	6.15 Panneau de contreplaqué, épaisseur 12 mm	53
	6.16 Panneau de contreplaqué, épaisseur 18 mm	55
	6.17 Panneau de contreplaqué, épaisseur 27 mm	57
7.	Construction des modèles prédictifs	59
	7.1 Généralités	59
	7.2 Panneaux de particules P4	60

	7.3 Panneaux de particules P5	
	7.4 Panneaux d'OSB/3	
	7.5 Panneaux d'OSB/4	
	7.6 Panneaux de contreplagué	
	7.7 Construction des tables de performance	
8.	Exploitation des modèles	
	8.1 Propositions de critères	
	8.2 Exemples de portées maximales obtenues	
9.	Conclusion	80

TABLE DES FIGURES

Figure 1 : Maguette d'essais selon EN 1195	16
Figure 2 : Le poincon carré 50x50 mm ² et la cellule de force	17
Figure 3 : Application de la charge au joint.	18
Figure 4 : Exemple d'un chargement en cours	18
Figure 5 : Exemple d'un cvcle de chargement	19
Figure 6 : Exemple d'un cycle d'évaluation de la raideur apparente	21
Figure 7 : Distinction entre F_{ser} et F_{max} .	22
Figure 8 : Rupture par flexion	23
Figure 9 : Rupture par poinconnement	24
Figure 10 : Mixte des deux modes de rupture	24
Figure 11 : Valeurs expérimentales du panneau P4 19 mm	28
Figure 12 : Résultats du panneau P4 19 mm	28
Figure 13 : Valeurs expérimentales du panneau P4 22 mm	30
Figure 14 · Résultats du panneau P4 22 mm	30
Figure 15 · Valeurs expérimentales du panneau P4 25 mm	32
Figure 16 : Résultats du panneau P4 25 mm	32
Figure 17 : Valeurs expérimentales du panneau P5 12 mm	34
Figure 18 : Résultats du panneau P5 12 mm	34
Figure 19 · Valeurs expérimentales du panneau P5 22 mm	36
Figure 20 : Résultats du panneau P5 22 mm	36
Figure 21 · Valeurs expérimentales du panneau P5 30 mm	38
Figure 22 : Résultats du panneau P5 30 mm	38
Figure 23 : Valeurs expérimentales du panneau OSB/3 12 mm	40
Figure 24 : Résultats du panneau OSB/3 12 mm	40
Figure 25 : Valeurs expérimentales du panneau OSB/3 16 mm	42
Figure 26 : Résultats du panneau OSB/3 16 mm	42
Figure 27 : Valeurs expérimentales du panneau OSB/3 18 mm.	44
Figure 28 : Résultats du panneau OSB/3 18 mm	44
Figure 29 : Valeurs expérimentales du panneau OSB/3 25 mm.	46
Figure 30 : Résultats du panneau OSB/3 25 mm	46
Figure 31 : Valeurs expérimentales du panneau OSB/4 12 mm.	48
Figure 32 : Résultats du panneau OSB/4 12 mm	48
Figure 33 : Valeurs expérimentales du panneau OSB/4 18 mm	50
Figure 34 : Résultats du panneau OSB/4 18 mm	50
Figure 35 : Valeurs expérimentales du panneau OSB/4 25 mm	52
Figure 36 : Résultats du panneau OSB/4 25 mm	52
Figure 37 : Valeurs expérimentales du panneau contreplagué 12 mm.	54
Figure 38 : Résultats du panneau contreplaqué 12 mm	54
Figure 39 : Valeurs expérimentales du panneau contreplagué 18 mm.	56
Figure 40 : Résultats du panneau contreplaqué 18 mm	56
Figure 41 : Valeurs expérimentales du panneau contreplagué 27 mm	58
Figure 42 : Résultats du panneau contreplaqué 27 mm	58
Figure 43 : Calage du modèle sur Fmax.mov – Panneau P4	60
Figure 44 : Calage du modèle sur Fser.mov – Panneau P4	60
Figure 45 : Calage du modèle sur Rmov – Panneau P4	61
	-

Figure 46 : Recalage du modèle sur Fmax,k – Panneau P4	61
Figure 47 : Recalage du modèle sur Fser,k – Panneau P4	62
Figure 48 : Calage du modèle sur Fmax,moy – Panneau P5	62
Figure 49 : Calage du modèle sur Fser, moy – Panneau P5	63
Figure 50 : Calage du modèle sur Rmoy – Panneau P5	63
Figure 51 : Recalage du modèle sur Fmax,k – Panneau P5	64
Figure 52 : Recalage du modèle sur Fser,k – Panneau P5	64
Figure 53 : Calage du modèle sur Fmax, moy – Panneau OSB/3	65
Figure 54 : Calage du modèle sur Fser, moy – Panneau OSB/3	65
Figure 55 : Calage du modèle sur Rmoy – Panneau OSB/3	66
Figure 56 : Recalage du modèle sur Fmax,k – Panneau OSB/3	66
Figure 57 : Recalage du modèle sur Fser,k – Panneau OSB/3	67
Figure 58 : Calage du modèle sur Fmax, moy – Panneau OSB/4	67
Figure 59 : Calage du modèle sur Fser, moy – Panneau OSB/4	68
Figure 60 : Calage du modèle sur Rmoy – Panneau OSB/4	68
Figure 61 : Recalage du modèle sur Fmax,k – Panneau OSB/4	69
Figure 62 : Recalage du modèle sur Fser,k – Panneau OSB/4	69
Figure 63 : Calage du modèle sur Fmax, moy – Panneau CTP	70
Figure 64 : Calage du modèle sur Fser, moy – Panneau CTP	70
Figure 65 : Calage du modèle sur Rmoy – Panneau CTP	71
Figure 66 : Recalage du modèle sur Fmax,k – Panneau CTP	71
Figure 67 : Recalage du modèle sur Fser,k – Panneau CTP	72

TABLE DES TABLEAUX

Tableau 1 : Catégories d'usage retenues	12
Tableau 2 : gammes d'entraxes des supports en fonction des panneaux	13
Tableau 3 : gammes d'entraxes des supports de toiture en fonction des panneaux	14
Tableau 4 : Plan d'expérience réalisé	14
Tableau 5 : P4 19 mm Entraxe des supports de 375 mm	27
Tableau 6 : P4 19 mm Entraxe des supports de 500 mm	27
Tableau 7 : P4 19 mm Entraxe des supports de 625 mm	27
Tableau 8 : P4 22 mm Entraxe des supports de 375 mm	29
Tableau 9 : P4 22 mm Entraxe des supports de 500 mm	29
Tableau 10 : P4 22 mm Entraxe des supports de 600 mm	29
Tableau 11 : P4 25 mm Entraxe des supports de 375 mm	31
Tableau 12 : P4 25 mm Entraxe des supports de 530 mm	31
Tableau 13 : P4 25 mm Entraxe des supports de 680 mm	31
Tableau 14 : P5 12 mm Entraxe des supports de 400 mm	33
Tableau 15 : P5 12 mm Entraxe des supports de 710 mm	33
Tableau 16 : P5 12 mm Entraxe des supports de 1000 mm	33
Tableau 17 : P5 22 mm Entraxe des supports de 375 mm	35
Tableau 18 : P5 22 mm Entraxe des supports de 700 mm	35
Tableau 19 : P5 22 mm Entraxe des supports de 1022 mm	35
Tableau 20 : P5 30 mm Entraxe des supports de 375 mm	37
Tableau 21 : P5 30 mm Entraxe des supports de 710 mm	37
Tableau 22 : P5 30 mm Entraxe des supports de 1014 mm	37
Tableau 23 : OSB/3 12 mm Entraxe des supports de 357 mm	39
Tableau 24 : OSB/3 12 mm Entraxe des supports de 800 mm	39
Tableau 25 : OSB/3 12 mm Entraxe des supports de 1250 mm	39
Tableau 26 : OSB/3 16 mm Entraxe des supports de 357 mm	41
Tableau 27 : OSB/3 16 mm Entraxe des supports de 680 mm	41
Tableau 28 : OSB/3 16 mm Entraxe des supports de 980 mm	41
Tableau 29 : OSB/3 18 mm Entraxe des supports de 357 mm	43
Tableau 30 : OSB/3 18 mm Entraxe des supports de 930 mm	43
Tableau 31 : OSB/3 18 mm Entraxe des supports de 1500 mm	43
Tableau 32 : OSB/3 25 mm Entraxe des supports de 357 mm	45
Tableau 33 : OSB/3 25 mm Entraxe des supports de 800 mm	45
Tableau 34 : OSB/3 25 mm Entraxe des supports de 1250 mm	45
Tableau 35 : OSB/4 12 mm Entraxe des supports de 375 mm	47
Tableau 36 : OSB/4 12 mm Entraxe des supports de 800 mm	47
Tableau 37 : OSB/4 12 mm Entraxe des supports de 1230 mm	47
Tableau 38 : OSB/4 18 mm Entraxe des supports de 375 mm	49
Tableau 39 : OSB/4 18 mm Entraxe des supports de 800 mm	49
Tableau 40 : OSB/4 18 mm Entraxe des supports de 1230 mm	49
Tableau 41 : OSB/4 25 mm Entraxe des supports de 375 mm	51
Tableau 42 : OSB/4 25 mm Entraxe des supports de 800 mm	51
Tableau 43 : OSB/4 25 mm Entraxe des supports de 1230 mm	51
Tableau 44 : CTP 12 mm Entraxe des supports de 357 mm	53
Tableau 45 : CTP 12 mm Entraxe des supports de 800 mm	53

Tableau 46 : CTP 12 mm Entraxe des supports de 1200 mm	. 53
Tableau 47 : CTP 18 mm Entraxe des supports de 357 mm	. 55
Tableau 48 : CTP 18 mm Entraxe des supports de 800 mm	. 55
Tableau 49 : CTP 18 mm Entraxe des supports de 1200 mm	. 55
Tableau 50 : CTP 27 mm Entraxe des supports de 357 mm	. 57
Tableau 51 : CTP 27 mm Entraxe des supports de 800 mm	. 57
Tableau 52 : CTP 27 mm Entraxe des supports de 1200 mm	. 57
Tableau 53 : Table de valeurs - Panneau P4	. 72
Tableau 54 : Table de valeurs – Panneau P5	. 73
Tableau 55 : Table de valeurs – Panneau OSB/3	. 73
Tableau 56 : Table de valeurs – Panneau OSB/4	. 74
Tableau 57 : Table de valeurs – Panneau CTP	. 74
Tableau 58 : Charge concentrée « moyen terme », Classe de service 1	. 77
Tableau 59: Charge concentrée « moyen terme », Classe de service 2	. 77
Tableau 60: Charge concentrée « court terme », Classe de service 1	. 78
Tableau 61 : Charge concentrée « court terme », Classe de service 2	. 78
Tableau 62 : Tableau DTU 51.3 : 1993	. 79

1. Rappel de l'Objectif

1.1 Le contexte

La révision du DTU 51.3 relatif aux ouvrages de planchers à base de bois, a mis en évidence la nécessité d'intégrer de nouveaux types de panneaux tels que l'OSB par exemple, et la nécessité de prendre en compte la nouvelle approche de justification mécanique introduite par les Eurocodes, à savoir la justification sous charge concentrée en fonction de la catégorie d'usage du plancher.

L'Eurocode 1 implique la prise en compte de charges d'exploitations harmonisées par catégories de bâtiments et de planchers. Ces charges d'exploitations sont de deux types :

- charges réparties
- charges concentrées

Si les charges réparties ne perturbent pas l'approche calculatoire préalable, les charges concentrées sont impactantes et nécessitent la création de modèles de calculs adaptés à chaque famille de panneaux. Il n'existe pas actuellement de méthodes de calcul fiables et calibrées pour effectuer la justification sous charge concentrée car il est extrêmement difficile de modéliser les phénomènes locaux du poinçonnement au voisinage du joint entre panneaux.

Il est donc nécessaire d'exploiter une voie expérimentale mais aucune campagne d'essais d'envergure n'a été menée jusqu'à présent.

Pour cela, la norme NF EN 12 871 introduit une méthode d'essai afin de caractériser le comportement mécanique des panneaux à base de bois vis à vis d'une charge concentrée.

1.2 L'objectif de cette étude

L'objectif de cette étude est de caractériser les comportements mécaniques des panneaux utilisés en plancher et support de couverture en menant une large campagne d'essais selon un plan d'expérience permettant de couvrir un large domaine d'emploi.

Cette approche permettra d'élaboration d'une base de données de résultats expérimentaux sur le comportement sous charges concentrées des différents types de panneaux à base de bois selon différentes mises en œuvre. Cette base de données permettra le calage et la validation d'un modèle de calcul.

À terme, ces modèles pourront être exploités pour alimenter les tableaux retenus dans le cadre du DTU « transversal » pour le dimensionnement des panneaux utilisés en plancher ou supports de couverture. Le but est de proposer une simplification de la justification des panneaux par des règles de moyens (tableaux de dimensionnement) adaptées aux cas courants retenus dans le domaine d'emploi.

Le présent document présente l'ensemble de l'étude MODPAN (Étude prénormative du comportement des panneaux sous charge concentrée pour le DTU transversal « Panneaux »), à savoir :

- l'ensemble des essais réalisés et résultats expérimentaux
- l'ensemble des analyses et exploitations
- les modèles retenus
- des exemples de tableaux de mise en œuvre basés sur des propositions de critères

Pour la détermination des valeurs caractéristiques, nous utilisons la version révisée de la norme, soit la prEN 12871 : 2012.

2. Description synthétique de l'étude

Cette étude a été menée selon le phasage suivant :

2.1 Choix du domaine d'application

Lors de cette première phase les professionnels/producteurs de panneaux ont été consultés afin de faire émerger les bornes des différents paramètres influant à savoir :

- Type de panneaux
- Épaisseurs de panneaux
- Gammes d'entraxes

Ces éléments ont été choisis notamment sur la base du domaine d'emploi retenu pour le futur DTU.

2.2 Élaboration du plan d'expérience

En fonction des paramètres retenus par la phase 1, un plan d'expérience et un plan d'échantillonnage ont été construit dans le but de couvrir, a priori, l'ensemble du domaine d'emploi visé.

Ce plan d'expérience a ensuite été corrigé et validé par les professionnels. Le plan d'échantillonnage associé a permis quant à lui de solliciter différents fabricants pour la fourniture des panneaux nécessaires à cette étude. L'approvisionnement en panneau a ainsi permis de mixer différentes productions pour une même configuration d'essais. Le but de cette procédure était multiple et notamment d'introduire à la fois une meilleure représentativité de production nationale et de la variabilité associée.

2.3 Réalisation des essais

L'ensemble des maquettes nécessaires à cette étude a été réalisé par la Laboratoire de Mécanique du Pôle Industrie Bois Construction de l'Institut Technologique FCBA. La mise en œuvre des panneaux était conforme aux prescriptions du DTU 51.3 concernant les planchers en bois.

Les essais ont été réalisés conformément au protocole de la norme EN 12871 dans sa version révisée 2012 (le texte étant en cours de révision pendant une partie de l'étude). Le détail est présenté plus loin dans ce document.

2.4 Analyse et interprétation des résultats d'essais

L'analyse et l'interprétation des résultats d'essais selon l'approche des Eurocodes a permis de caractériser les performances des panneaux sous une charge concentrée. Outre le travail d'analyse des modes de rupture, la norme NF EN 12871 donne les méthodes de détermination des propriétés nécessaires à l'exploitation des panneaux en plancher et support de couverture. Les valeurs à déterminer sont :

- La force de service caractéristique générant un 1^{er} endommagement : F_{ser,k}
- La force maximale caractéristique : F_{max,k}
- La raideur moyenne apparente : R_{mean}

Ce travail a été réalisé sur l'ensemble des configurations d'essais.

2.5 Élaboration et calage des modèles prédictifs

Le travail d'analyse de la phase précédente a permis de construire, pour chaque valeur citée, une grille de performances en fonction du type de panneaux, de son épaisseur et des entraxes des supports. Ces grilles ont ensuite été exploitées pour le calage d'un « macro » modèle.

Ces modèles étant basés directement sur les résultats expérimentaux, il s'agit de modèles prédictifs couvrant le domaine d'emploi du plan d'expérience.

2.6 Exploitation des modèles

La nouvelle version de la norme NF EN 12871 ne donne plus d'exigences de performances. Elle ne traite que de la caractérisation des panneaux. Aussi, il appartient à chaque pays de donner les critères permettant de justifier de la conformité et du dimensionnement des panneaux en fonction du domaine d'emploi visé.

A défaut de critères nationaux, la norme NF EN 12871 propose dans une annexe informative de tels critères concernant les vérifications en termes de sécurité (États Limites Ultimes) et de limitations des déformations (États Limites de Service).

Cette étude étant une étude prénormative, les modèles ont été exploités à partir de propositions de critères possibles afin d'alimenter la future commission de normalisation.

3. Le domaine d'application et le plan d'expérience

3.1 Les catégories d'usage

Lors de cette première phase les professionnels/producteurs de panneaux ont été consultés. Le choix du domaine d'application s'appuie notamment sur la base du domaine d'emploi retenu pour le futur DTU.

Conformément à la norme NF EN 1991-1-1 + NA (Eurocode 1), les catégories d'usage retenues sont les catégories A, B, C1, C2 et H. Ces catégories d'usage permettent de définir les charges réparties q_k et concentrées Q_k devant être utilisées pour la justification des planchers. Le tableau suivant présente les catégories retenues.

Catégorie	Type d'utilisation	q _k (kN/m²)	Q _k (kN)	Exemple
Α	Activités résidentielles	1,5	2	Appartements, chambres d'hôtel
В	B Bureaux 2,5 4 Bureaux, Classes, s d'opération en hôpita		Bureaux, Classes, salles d'opération en hôpital	
6	C1 : Espaces équipés de tables	2,5	3	Écoles, cafés, restaurants, salles de banquet, salles de lecture, salles de réception
C	C2 : Espaces équipés de sièges fixes	4	4	Églises, théâtres, cinémas, salles de conférence, salles de réunion ou d'attente
Н	Toitures inaccessibles	-	1,5	Charge d'entretien

Tableau 1 : Catégories d'usage retenues

On notera cependant que les résultats d'essais pourront permettre, le cas échéant, d'étendre ce domaine d'emploi.

3.2 Les panneaux retenus

Les différents types de panneaux retenus pour cette étude sont :

• Les panneaux contreplaqués destinés à un usage en milieu sec en tant que composant structural conformes à NF EN 636-1

- Les panneaux contreplaqués destinés à un usage en milieu humide en tant que composant structural conformes à NF EN 636-2
- Les panneaux de particules destinés à un usage en milieu sec en tant que composant structural type P4 conformes à NF EN 312
- Les panneaux de particules destinés à un usage en milieu humide en tant que composant structural type P5 conformes à NF EN 312
- Les panneaux OSB destinés à un usage en milieu humide en tant que composant structural type OSB/3 et OSB/4 conformes à NF EN 300

Dans la suite du rapport, nous utiliserons les abréviations suivantes :

- Panneau de particules : P4 et P5
- Panneau contreplaqué : CTP
- Panneau OSB : OSB/3 et OSB/4

3.3 Le plan d'expérience

Sur la base de ce domaine d'emploi et de ces panneaux retenus, les mises en œuvre possibles sont indiquées dans le tableau suivant avec des entraxes minimum et maximum cibles.

• En plancher :

ieau	au <u>2 . gammes d'entraxes des supports' en fonction des p</u> an					
	Panneau	Épaisseur	Entraxe min	Entraxe max		
		19 mm	375 mm	625 mm		
	P4	22 mm	375 mm	625 mm		
		25 mm	375 mm	680 mm		
		19 mm	375 mm	625 mm		
	DS	22 mm	375 mm	625 mm		
	ГJ	25 mm	375 mm	680 mm		
		30 mm	375 mm	680 mm		
		18 mm	357 mm	625 mm		
	036-2	22 mm	357 mm	625 mm		
	OSB-3	16 mm	400 mm	600 mm		
		18 mm	357 mm	625 mm		
		22 mm	357 mm	833 mm		
		15 mm	375 mm	500 mm		
	OSB-4	18 mm	375 mm	625 mm		
	000-4	22 mm	375 mm	833 mm		
		25 mm	375 mm	833 mm		
		15 mm	357 mm	625 mm		
	CTP	18 mm	357 mm	625 mm		
		21 mm	357 mm	833 mm		

 Tableau
 2 : gammes d'entraxes des supports en fonction des panneaux

• En toiture :

Tableau 3 : g	ammes d'e	ntraxes de	s supports de to	oiture en fonctior	<u>n d</u> es panneaux
		,			

Panneau	Épaisseur	Entraxe min	Entraxe max
	12 mm	400 mm	1022 mm
DE	16 mm	400 mm	1022 mm
FD	19 mm	375 mm	1022 mm
	22 mm	375 mm	1022 mm
	12 mm	357 mm	1250 mm
OSB 2	15 mm	357 mm	1250 mm
036-3	16 mm	360 mm	1000 mm
	18 mm	357 mm	1250 mm
	12 mm	375 mm	1250 mm
OSB-4	15 mm	375 mm	1250 mm
	18 mm	375 mm	1250 mm
	12 mm	357 mm	1250 mm
CTP	15 mm	357 mm	1250 mm
	18 mm	357 mm	1250 mm

Pour pouvoir caler un modèle prédictif par épaisseur, il convient de tester au minimum 3 entraxes et 3 épaisseurs par type de panneau. La fusion des deux tableaux précédents et la prise en compte des dimensions des panneaux ont conduit à retenir le plan d'expérience suivant :

Denneeu	Tableau 4 - Flati u experience realise					
Panneau	Epaisseur	Entraxe	Entraxe 2	Entraxe 3		
	19 mm	375 mm	500 mm	625 mm		
P4	22 mm	375 mm	500 mm 710 mm	600 mm 625 mm		
	25 mm	375 mm	530 mm	680 mm		
	12 mm	400 mm	710 mm	1000 mm		
P5	22 mm	375 mm	700 mm	1022 mm		
	30 mm	375 mm	710 mm	1014 mm		
	12 mm	357 mm	800 mm	1230 mm		
OSB/3	16 mm	357 mm	680 mm	980 mm		
	18 mm	357 mm	930 mm	1480 mm		

Tableau 4 : Plan d'expérience réalisé

Panneau	Épaisseur	Entraxe 1	Entraxe 2	Entraxe 3
	25 mm	357 mm	800 mm	1230 mm
	12 mm	375 mm	800 mm	1230 mm
OSB/4	18 mm	375 mm	800 mm	1230 mm
	25 mm	375 mm	800 mm	1230 mm
	12 mm	357 mm	800 mm	1200 mm 1230 mm
СТР	18 mm	357 mm	800 mm	1200 mm
	27 mm	357 mm	800 mm	1200 mm

4. Protocole d'essais

4.1 Généralités

Les essais sont menés conformément au protocole de la norme EN 1195 avec les modifications demandées par l'EN 12871, à savoir 12 essais par configuration au niveau du joint entre panneaux posés sur 3 lambourdes. La force est appliquée à mi portée avec un poinçon carré articulé de 50 x 50 mm².

Figure 1 : Maquette d'essais selon EN 1195

Pour se placer dans une approche conservatrice et permettant de limiter la taille des maquettes, nous avons utilisé, lorsque cela était possible, des panneaux avec b = 60 cm de largeur. Nous travaillons ainsi sur 2 maquettes de 2,4 m (6 essais par maquette).

Les panneaux ont été mis en œuvre conformément au DTU 51.3 sur 3 appuis sur des solives de 45 mm pour maximiser la portée libre entre appuis (approche conservatrice). La fixation des panneaux sur les solives a été réalisée par des vis dont le diamètre était conforme aux prescriptions du DTU 51.3.

Afin d'avoir une représentativité de la production, à chaque fois que cela était possible, nous avions, pour chaque configuration d'essais, 2 producteurs différents pour la fourniture des panneaux (1 maquette par fournisseur).

4.2 Choix du point d'application de la charge concentrée

Conformément à la norme NF EN 12871, les essais doivent être réalisés au droit du point le plus défavorable. A priori, il s'agit du joint entre panneaux à mi-portée. Pour le vérifier, une série préalable de 3 essais est réalisée et consistant à positionner le point d'application de l'effort concentré, toujours à mi-portée, en partie centrale d'un panneau (pleine masse), coté rainure du joint et coté languette du joint. Dans tous les cas testés, la position la plus défavorable reste au droit du joint.

Cependant, le choix « coté rainure » ou « coté languette » n'est pas toujours trivial et peut être inversé en fonction des panneaux. Aussi il a été convenu par le comité de pilotage de réaliser les 12 essais en mixant les deux, à savoir, 6 essais coté rainure et 6 essais coté languette. Cette approche permet en outre d'introduire une légère variabilité supplémentaire qui sera prise en compte lors de la détermination des valeurs caractéristiques.

Les illustrations ci-après présentent un exemple d'essais réalisés.

Figure 2 : Le poinçon carré 50x50 mm² et la cellule de force

Figure 3 : Application de la charge au joint

Figure 4 : Exemple d'un chargement en cours

4.3 Le cycle de chargement

Le cycle de chargement est composé de 2 phases :

- <u>cycle d'évaluation de la raideur</u>: Ce cycle est piloté en force. Une montée en charge monotone jusqu'à 40% de la force maximale estimée (par un essai préliminaire), descente monotone jusqu'à 10% de la charge maximale estimée, 2^e montée monotone jusqu'à 40% et décharge monotone complète.
- 2. <u>cycle d'évaluation de la rupture</u> : Ce cycle est piloté en déplacement. Enfoncement du poinçon jusqu'à rupture du panneau.

Figure 5 : Exemple d'un cycle de chargement

4.4 Essai de choc de corps mou

Pour chaque maquette, sur les zones non utilisées pour les essais de résistance sous charge concentrée, des essais de choc de corps mou ont été réalisés conformément à la norme NF EN 12871. Ces essais consistent à lâcher un corps mou de 50 kg normalisé d'une hauteur croissante selon le protocole de la prEN 12871 (2012). Les endommagements sont notés afin de déterminer la classe d'impact selon les critères donnés dans prEN 12871 (2012).

5. Traitement des résultats d'essais

5.1 Rappel de l'EN 12871

Suite à la révision de la norme EN 12871, cette dernière est maintenant une norme d'essai. Les valeurs à déterminer sont :

- La force de service caractéristique générant un 1^{er} endommagement (ou limite d'élasticité) : F_{ser,k}
- La force maximale caractéristique : F_{max,k}
- La raideur moyenne apparente : R_{mean}

Cette norme permet également de caractériser la résistance à l'impact d'un corps mou (chute) par l'affectation dans une classe d'impact (I, II ou III) en fonction de l'endommagement du panneau pour différentes hauteurs de chute.

5.2 Méthodologie du traitement

La méthodologie suivante a été appliquée pour le traitement des résultats et des courbes d'essais.

Sur le cycle d'évaluation de la raideur

L'analyse de cette partie du cycle permet d'extraire la raideur apparente R_{mean} en N/mm sur la portion entre 10% et 40% de la charge maximum estimée (à partir d'un essai initial monotone).

Pour l'ensemble des essais réalisés l'allure des courbes est identique (voir Figure 6).

Cycle Raideur

Figure 6 : Exemple d'un cycle d'évaluation de la raideur apparente

Sur le cycle d'évaluation des résistances

L'analyse de cette partie du cycle permet d'extraire la résistance de service F_{ser} en N qui correspond au 1^{er} endommagement identifiable sur la courbe (limite d'élasticité) et la résistance maximale F_{max} (voir Figure 7).

L'endommagement pouvant être plus ou moins important, son identification sur la courbe d'essai peut être :

- une chute brutale de l'effort
- un changement de pente significatif et marqué

Cycle Rupture

Figure 7 : Distinction entre F_{ser} et F_{max}

5.3 Synthèse des comportements observés

Pour l'ensemble des essais réalisés, l'allure des courbes jusqu'à l'atteinte de F_{ser} est identique et est caractérisée par un comportement quasi-linéaire (élastique). De plus, cet endommagement est systématiquement lié à la rupture de la face inférieure du panneau (« languette » inférieure de la rainure) au droit du poinçon.

Par contre, le comportement au-delà de cet endommagement diffère en fonction les configurations d'essais. On peut distinguer trois tendances :

 Après l'endommagement le panneau a encore de la résistance avec une résistance maximale supérieure à la résistance de service comme l'exemple précédent

Figure 8 : Rupture par flexion

Ce cas est rencontré dans la majorité des configurations à entraxes « usuels » ou lorsque l'élancement est grand. Il correspond à une rupture du panneau en flexion associée à un poinçonnement localisé.

 Après l'endommagement le panneau n'a plus de résistance, la résistance de service est la résistance maximale. La « chute » après l'endommagement est rapide.

Ce cas est rencontré dans les configurations avec une forte épaisseur de panneau et un entraxe réduit pour les panneaux de particules ou OSB. Il correspond à une rupture par poinçonnement du panneau.

Note : On rencontre également ce cas pour certains panneaux de contreplaqué en faible épaisseur pour lesquels on observe une rupture progressive des plis en flexion après l'endommagement.

Cycle Rupture

Figure 9 : Rupture par poinçonnement

 Après l'endommagement le panneau a encore de la résistance mais la force ultime ne progresse plus, voire reste inférieure à la résistance de service qui peut devenir, de fait, également la résistance maximale.

Ce cas est traduit un mixte des deux modes de rupture en flexion et en poinçonnement. Il est observé sur les panneaux à forte épaisseurs du type OSB et particules pour des entraxes importants.

Lorsque les résistances F_{ser} et F_{max} sont proches, les cas 1 et 3 peuvent se rencontrer simultanément sur la même maquette d'essais. Cela induit une variabilité plus importante sur les valeurs F_{max} que sur les valeurs F_{ser} . De fait, bien qu'en valeurs moyennes F_{max} soit toujours supérieure à F_{ser} , le calcul des valeurs caractéristiques peut conduire à une valeur $F_{max,k}$ inférieure à $F_{ser,k}$.

Aussi, afin de proposer un modèle prédictif plus cohérent, celui-ci sera d'abord construit sur la base des valeurs moyennes, puis recalé en fonction des valeurs caractéristiques. Le détail de l'approche est donné plus loin dans ce rapport.

• Enfin, dans de rares cas, il a pu être observé des comportements quasi élastiques fragiles.

6. Synthèse des résultats d'essais

6.1 Généralités

Les tableaux suivants présentent une synthèse des résultats d'essais pour l'ensemble des configurations caractérisées.

Les données présentées sont les données obtenues par l'exploitation des résultats d'essais afin de déterminer les résistances F_{ser} et F_{max} et les raideurs R pour chaque configuration testée selon la méthodologie donnée précédemment.

Conformément à la prEN 12871 (2012), les valeurs caractéristiques sont calculées selon la méthodologie de l'annexe D de la norme NF EN 1990 en utilisant une loi de distribution du type log-normale.

Les tableaux de résultats synthétiques donnent pour chaque série de 12 essais (1 configuration d'essais) :

 $\begin{array}{l} F_{max,min}: La \ valeur \ F_{max} \ minimale \\ F_{max,max}: La \ valeur \ F_{max} \ maximale \\ F_{max,moy}: La \ valeur \ F_{max} \ moyenne \\ F_{max,k}: La \ valeur \ caractéristique \ de \ F_{max} \end{array}$

 $\begin{array}{l} F_{ser,min}: La \ valeur \ F_{ser} \ minimale \\ F_{ser,max}: La \ valeur \ F_{ser} \ maximale \\ F_{ser,moy}: La \ valeur \ F_{ser} \ moyenne \\ F_{ser,k}: La \ valeur \ caractéristique \ de \ F_{ser} \end{array}$

R_{min} : La valeur R minimale R_{max} : La valeur R maximale R_{moy} : La valeur R moyenne R_{mean} : La valeur R apparente retenue

COV : les coefficients de variation

Les valeurs sont données en :

- N pour les résistances mini, maxi et moyenne
- kN pour les valeurs caractéristiques de résistance
- N/mm pour les raideurs apparentes
- % pour les coefficients de variation

Une représentation graphique est également donnée. Sur le graphique, en fonction de l'entraxe des appuis, les courbes représentent respectivement :

• En jaune fin : les valeurs minimales, moyennes et maximales de F_{max} en kN

- En jaune gras : les valeurs caractéristiques de F_{max} en kN
- En rouge fin : les valeurs minimales, moyennes et maximales de Fser en kN
- En rouge gras : les valeurs caractéristiques de Fser en kN
- En noir gras : les valeurs de R_{mean} en kN/mm

6.2 Panneau de particules P4, épaisseur 19 mm

6.2.1 Synthèse des résultats

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3845	5603	4668	13,7%	3,56
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
3777	4482	4158,7	5,1%	3,77
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
664	945	777	11,9%	777

Tableau 5 : P4 19 mm Entraxe des supports de 375 mm

Tableau 6 : P4 19 mm Entraxe des supports de 500 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3421	4832	4149,8	13,0%	3,21
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
3060	3692	3391,6	6,1%	3,02
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
407	536	474	7,7%	474

Tableau 7 : P4 19 mm Entraxe des supports de 625 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
2967	4431	3683,7	14,5%	2,77
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2839	3132	3012,3	2,9%	2,85
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
279	343	324	6,0%	324

6.2.2 Représentation graphique

Figure 11 : Valeurs expérimentales du panneau P4 19 mm

Figure 12 : Résultats du panneau P4 19 mm

6.3 Panneau de particules P4, épaisseur 22 mm

6.3.1 Synthèse des résultats

Tableau 8 : P4 22 mm Entraxe des supports de 375 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4977	6748	5701,3	9,2%	4,78
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4800	5690	5279,1	4,9%	4,80
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
730	1353	1084	16,9%	1084

Tableau 9 : P4 22 mm Entraxe des supports de 500 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4814	6884	5586,8	10,9%	4,56
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4517	5535	4958,0	6,1%	4,42
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
715	932	802	7,4%	802

Tableau 10 : P4 22 mm Entraxe des supports de 600 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4756	6414	5455,6	10,1%	4,50
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4323	5651	4767,9	8,6%	4,06
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
436	620	530	11,8%	530

6.3.1 Représentation graphique

Figure 13 : Valeurs expérimentales du panneau P4 22 mm

Figure 14 : Résultats du panneau P4 22 mm

6.4 Panneau de particules P4, épaisseur 25 mm

6.4.1 Synthèse des résultats

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4907	6222	5596,7	7,8%	4,80
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4841	5995	5397,3	6,8%	4,73
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
1312	1619	1436	7,1%	1436

Tableau 11 : P4 25 mm Entraxe des supports de 375 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4451	6296	5273,3	13,6%	4,05
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4451	5613	4965,5	8,6%	4,21
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
811	991	893	6,4%	893

Tableau	13:	P4 25	mm	Entraxe	des	supports	de	68 0	mm
---------	-----	-------	----	---------	-----	----------	----	-------------	----

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3986	5330	4574,7	11,2%	3,68
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
3489	4395	3922,3	5,4%	3,54
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
519	593	550	3,5%	550

6.4.2 Représentation graphique

Figure 15 : Valeurs expérimentales du panneau P4 25 mm

6.5 Panneau de particules P5, épaisseur 12 mm

6.5.1 Synthèse des résultats

Tableau 14 : P5 12 mm Entraxe des supports de 400 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
2223	3564	2716,1	16,5%	2,00
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2258	3010	2566,9	10,6%	2,09
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
223	341	305	12,2%	305

Tableau 15 : P5 12 mm Entraxe des supports de 710 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
1707	2347	1995,2	9,9%	1,65
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1707	2141	1947,0	7,7%	1,67
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
99	119	111	6,0%	111

Tableau 16 : P5 12 mm Entraxe des supports de 1000 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
1546	1972	1746,8	9,4%	1,46
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1447	1972	1687,3	10,6%	1,38
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
50	65	55	8,3%	55

6.5.2 Représentation graphique

Figure 17 : Valeurs expérimentales du panneau P5 12 mm

Figure 18 : Résultats du panneau P5 12 mm

6.6 Panneau de particules P5, épaisseur 22 mm

6.6.1 Synthèse des résultats

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
5018	7385	6433	13,2%	4,92
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4933	7069	5940	12,4%	4,67
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
805	1530	1101	20,5%	1101

Tableau 17 : P5 22 mm Entraxe des supports de 375 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4368	6781	5350	13,2%	4,15
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
3601	4860	4399	9,2%	3,65
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
348	473	418	7,9%	418

Tableau	19 : P5 22	2 mm	Entraxe	des	supports	de	1022	mm
rubiouu	10.1022		Linuaro	400	oupponto	uu	1022	

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3697	5647	4458	16,2%	3,27
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2508	4211	3769	12,0%	2,88
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
170	243	204	10,1%	204

6.6.2 Représentation graphique

Figure 19 : Valeurs expérimentales du panneau P5 22 mm

6.7 Panneau de particules P5, épaisseur 30 mm

6.7.1 Synthèse des résultats

Tableau 20 : P5 30 mm Entraxe des supports de 375 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
6475	9328	8028,8	11,0%	6,46
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
6088	9220	7574,6	11,6%	6,04
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
940	1448	1235	14,0%	1235

Tableau 21 : P5 30 mm Entraxe des supports de 710 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
6260	8958	7649,7	13,7%	5,84
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
6022	7609	6646,3	7,2%	5,80
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
716	879	819	5,1%	819

Tableau 22 : P5 30 mm Entraxe des supports de 1014 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
5098	7017	6017,7	13,3%	4,65
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4546	6227	5360,3	10,0%	4,43
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
311	406	374	7,3%	374

6.7.2 Représentation graphique

Figure 21 : Valeurs expérimentales du panneau P5 30 mm

6.8 Panneau d'OSB/3, épaisseur 12 mm

6.8.1 Synthèse des résultats

Tableau 23 : OSB/3 12 mm Entraxe des supports de 357 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
1984	3266	2533	16,1%	1,86
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1917	3241	2470	16,4%	1,80
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
279	388	335	11,5%	335

Tableau 24 : OSB/3 12 mm Entraxe des supports de 800 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
1638	2455	1995,7	13,8%	1,53
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1453	2455	1932,8	16,9%	1,38
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
73	105	92	11,1%	92

Tableau 25 : OSB/3 12 mm Entraxe des supports de 1250 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
1382	2120	1689,0	13,6%	1,30
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1291	2120	1654,0	15,4%	1,23
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
22	70	41	27,5%	41

6.8.2 Représentation graphique

Figure 23 : Valeurs expérimentales du panneau OSB/3 12 mm

Figure 24 : Résultats du panneau OSB/3 12 mm

6.9 Panneau d'OSB/3, épaisseur 16 mm

6.9.1 Synthèse des résultats

Tableau 26 : OSB/3 16 mm Entraxe des supports de 357 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3034	4665	3599	16,1%	2,67
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2513	4237	3150	19,9%	2,16
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
465	678	537	12,5%	537

Tableau 27 : OSB/3 16 mm Entraxe des supports de 680 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
2739	4468	3466	14,6%	2,62
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2693	4468	3337	16,6%	2,43
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
196	267	229	9,0%	229

Tableau 28 : OSB/3 16 mm Entraxe des supports de 980 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
2697	3871	3215	14,1%	2,40
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2697	3871	3164	13,3%	2,41
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
115	129	123	4,0%	123

6.9.2 Représentation graphique

Figure 25 : Valeurs expérimentales du panneau OSB/3 16 mm

6.10 Panneau d'OSB/3, épaisseur 18 mm

6.10.1 Synthèse des résultats

Tableau 29 : OSB/3 18 mm Entraxe des supports de 357 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3873	6019	4545,2	12,9%	3,59
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2881	6019	4074,4	19,5%	2,81
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
622	896	751	10,8%	751

Tableau 30 : OSB/3 18 mm Entraxe des supports de 930 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3014	4948	3731,8	16,2%	2,76
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2758	4804	3495,0	16,0%	2,60
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
162	196	176	5,4%	176

Tableau 31 : OSB/3 18 mm Entraxe des supports de 1500 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
2866	3665	3335,3	7,6%	2,87
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2740	3665	3252,8	9,3%	2,71
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
66	78	71	5,8%	71

6.10.2 Représentation graphique

Figure 27 : Valeurs expérimentales du panneau OSB/3 18 mm

6.11 Panneau d'OSB/3, épaisseur 25 mm

6.11.1 Synthèse des résultats

R_{max}

1260

 R_{min}

717

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
5374	8221	6883,1	11,9%	5,42
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
5073	8221	6598,6	13,9%	4,99

R_{moy}

1002

COV

15,2%

R_{mean}

1002

Tableau 32 : OSB/3 25 mm Entraxe des supports de 357 mm

Tableau 33 : OSB/3	25 mm Entraxe	des supports	de 800 mm
--------------------	---------------	--------------	-----------

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
5442	8088	6378,4	11,6%	5,15
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
5332	7523	6199,5	10,4%	5,10
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
385	446	409	5,0%	409

Tableau 34 : OSB/3 25 mm Entraxe des supports de 1250 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4944	6572	5621,3	8,1%	4,82
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4944	6572	5547,0	9,1%	4,67
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
311	406	374	7,3%	374

6.11.2 Représentation graphique

Figure 29 : Valeurs expérimentales du panneau OSB/3 25 mm

Figure 30 : Résultats du panneau OSB/3 25 mm

6.12 Panneau d'OSB/4, épaisseur 12 mm

6.12.1 Synthèse des résultats

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
2500	3928	2984	15,1%	2,25
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2077	3928	2809	20,7%	1,88
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
355	480	417	9.6%	417

Tableau 35 : OSB/4 12 mm Entraxe des supports de 375 mm

Tableau 36 : OSB/4 12 mm Entraxe des supports de 800 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
1801	2489	2155	9,6%	1,79
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1525	2489	2060	13,3%	1,57
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
84	111	97	8,6%	97

Tableau 37 : OSB/4 12 mm Entraxe des supports de 1230 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
1,54	1,54	1,54	1,54	1,54
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1538	2491	2067,3	17,2%	1,46
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
42	52	46	7,2%	46

6.12.2 Représentation graphique

Figure 31 : Valeurs expérimentales du panneau OSB/4 12 mm

Figure 32 : Résultats du panneau OSB/4 12 mm

6.13 Panneau d'OSB/4, épaisseur 18 mm

6.13.1 Synthèse des résultats

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4320	7328	5507	13,8%	4,24
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4194	7013	5249	13,9%	4,06
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
620	1018	805	14,5%	805

Tableau 38 : OSB/4 18 mm Entraxe des supports de 375 mm

Tableau 39 : OSB/4 18 mm Entraxe des supports de 800 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3906	4694	4345	5,7%	3,89
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
3690	4661	4231	8,0%	3,62
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
225	263	241	5,2%	241

Tableau 40 : OSB/4 18 mm Entraxe des supports de 1230 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3351	4563	3891	9,4%	3,25
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
3069	4563	3816	11,3%	3,06
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
109	264	136	32,5%	136

6.13.2 Représentation graphique

Figure 33 : Valeurs expérimentales du panneau OSB/4 18 mm

Figure 34 : Résultats du panneau OSB/4 18 mm

6.14 Panneau d'OSB/4, épaisseur 25 mm

6.14.1 Synthèse des résultats

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
5648	7249	6347	9,1%	5,33
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4816	6799	5847	10,3%	4,76
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
746	1371	1114	16.2%	1114

Tableau 41 : OSB/4 25 mm Entraxe des supports de 375 mm

Tableau 42 : OSB/4 25 mm Entraxe des supports de 800 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4900	6656	5833	8,9%	4,91
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4685	6633	5585	9,9%	4,61
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
398	543	467	8,6%	467

Tableau 43 : OSB/4 25 mm Entraxe des supports de 1230 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3901	6871	5595	16,2%	4,01
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
3901	6871	5539	16,4%	3,96
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
202	304	228	11,6%	228

6.14.2 Représentation graphique

Figure 35 : Valeurs expérimentales du panneau OSB/4 25 mm

Figure 36 : Résultats du panneau OSB/4 25 mm

6.15 Panneau de contreplaqué, épaisseur 12 mm

6.15.1 Synthèse des résultats

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3803	5893	4596	15,1%	3,45
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
2700	5145	3655	18,5%	2,55
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
257	522	407	23,8%	407

Tableau 44 : CTP 12 mm Entraxe des supports de 357 mm

Tableau 45 : CTP 12 mm Entraxe des supports de 800 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
2205	4970	3627,3	26,1%	2,05
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1908	4970	3363,1	30,7%	1,75
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
82	135	104	17,4%	104

Tableau 46 : CTP 12 mm Entraxe des supports de 1200 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
1490	4617	3222,8	29,8%	1,64
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
1174	4089	2934,6	32,2%	1,31
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
34	56	45	17,5%	45

6.15.2 Représentation graphique

Figure 37 : Valeurs expérimentales du panneau contreplaqué 12 mm

Figure 38 : Résultats du panneau contreplaqué 12 mm

6.16 Panneau de contreplaqué, épaisseur 18 mm

6.16.1 Synthèse des résultats

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
6948	9078	7906,1	8,0%	6,78
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4552	7427	6087,8	16,0%	4,40
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
672	916	775	8,9%	775

Tableau 47 : CTP 18 mm Entraxe des supports de 357 mm

Tableau 48 : CTP 18 mm Entraxe des supports de 800 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
4904	6930	5994,6	10,6%	4,87
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
4106	6425	5510,5	14,6%	4,09
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
210	287	240	10,1%	240

Tableau 49 : CTP 18 mm Entraxe des supports de 1200 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
3857	6695	5482,3	14,9%	4,03
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
3443	6661	5251,3	19,3%	3,48
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
87	120	105	10,8%	105

6.16.2 Représentation graphique

Figure 39 : Valeurs expérimentales du panneau contreplaqué 18 mm

Figure 40 : Résultats du panneau contreplaqué 18 mm

6.17 Panneau de contreplaqué, épaisseur 27 mm

6.17.1 Synthèse des résultats

Tableau 50 : CTP 27 mm Entraxe des supports de 357 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
12133	18099	15352,4	11,9%	12,11
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
10032	15543	12645,2	14,5%	9,45
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
1010	2952	1854	30,2%	1854

Tableau 51 : CTP 27 mm Entraxe des supports de 800 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
7477	15971	10898,2	23,2%	6,90
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
5909	12588	9799,8	21,9%	6,09
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
481	824	621	15,3%	621

Tableau 52 : CTP 27 mm Entraxe des supports de 1200 mm

F _{max,min}	F _{max,max}	F _{max,moy}	COV	F _{max,k}
5819	12127	9474,1	19,9%	6,20
F _{ser,min}	F _{ser,max}	F _{ser,moy}	COV	F _{ser,k}
5819	12127	9026,1	21,6%	5,82
R _{min}	R _{max}	R _{moy}	COV	R _{mean}
226	333	270	15,1%	270

6.17.2 Représentation graphique

Figure 41 : Valeurs expérimentales du panneau contreplaqué 27 mm

Figure 42 : Résultats du panneau contreplaqué 27 mm

7. Construction des modèles prédictifs

7.1 Généralités

Les résultats expérimentaux sont exploités selon les principes généraux de l'Eurocode NF EN 1990 et son annexe D.

Pour cela, un premier calage des modèles est réalisé sur la base des valeurs moyennes des résultats expérimentaux. Cette approche permet de capturer le comportement global et l'évolution des différents paramètres mesurés, à savoir la résistance maximale, la résistance de service et la raideur apparente sous charge concentrée.

De plus, ce calage permet de s'affranchir des effets de la variabilité des résultats expérimentaux d'une même configuration qui peuvent dans certains cas conduire à des incohérences de comportement. Par exemple, une résistance qui évolue à la baisse en valeur moyenne mais à la hausse en valeur caractéristique du fait de plus d'une variabilité variable.

Pour chaque type de panneau, les deux variables d'entrée sont l'épaisseur et la portée entre appuis. La variable de sortie est, le cas échéant, la résistance maximale, la résistance de service et la raideur apparente sous charge concentrée.

Les modèles se présentent donc sous la forme de surfaces d'interpolation à deux variables.

Les modèles sont ensuite corrigés par l'application d'un coefficient constant (par type de panneau) afin de recaler les modèles sur la base des valeurs caractéristiques et positionner ainsi les modèles prédictifs du côté sécuritaire tout en conservant l'évolution du comportement prédictif établi à partir des valeurs moyennes.

Les modèles obtenus sont présentés ci-après.

Sur les figures représentant les recalages sur les valeurs caractéristiques, les points noirs représentent les valeurs expérimentales.

7.2 Panneaux de particules P4

7.2.1 Calage en valeurs moyennes

Figure 43 : Calage du modèle sur Fmax,moy – Panneau P4

Figure 44 : Calage du modèle sur Fser, moy – Panneau P4

On peut observer un effet « plateau » des résistanœs pour les fortes épaisseurs et les faibles entraxes. Ceci est dû à un changement du mode de rupture principal que passe de la flexion pour les faibles épaisseurs/grands entraxes à du poinçonnement du panneau pour les fortes épaisseurs/petits entraxes. De fait, les résistances plafonnent à la résistance au poinçonnement « pur ».

Figure 45 : Calage du modèle sur Rmoy – Panneau P4

7.2.2 Recalage en valeurs caractéristiques

Figure 46 : Recalage du modèle sur Fmax,k – Panneau P4

Figure 47 : Recalage du modèle sur Fser, k – Panneau P4

7.3 Panneaux de particules P5

7.3.1 Calage en valeurs moyennes

Figure 48 : Calage du modèle sur Fmax,moy – Panneau P5

Figure 49 : Calage du modèle sur Fser, moy – Panneau P5

Bien que moins marqué que sur le panneau type P4, on peut observer ce même effet « plateau » des résistances pour les fortes épaisseurs et les faibles entraxes dû à la résistance au poinçonnement « pur ». Pour le panneau type P5, l'effet est plus marqué sur la résistance ultime que sur la résistance de service (1^{er} endommagement notable du panneau).

Figure 50 : Calage du modèle sur Rmoy – Panneau P5

7.3.2 Recalage en valeurs caractéristiques

Figure 51 : Recalage du modèle sur Fmax,k – Panneau P5

Figure 52 : Recalage du modèle sur Fser, k – Panneau P5

7.4 Panneaux d'OSB/3

7.4.1 Calage en valeurs moyennes

Figure 53 : Calage du modèle sur Fmax, moy – Panneau OSB/3

Figure 54 : Calage du modèle sur Fser, moy – Panneau OSB/3

Tout comme le panneau type P5, on peut observer ce même effet « plateau » des résistances pour les fortes épaisseurs dû à la résistance au poinçonnement « pur ». Pour le panneau OSB/3, l'effet est plus marqué sur la résistance ultime que sur la résistance de service (1^{er} endommagement notable du panneau).

Figure 55 : Calage du modèle sur Rmoy – Panneau OSB/3

7.4.2 Recalage en valeurs caractéristiques

Figure 56 : Recalage du modèle sur Fmax,k – Panneau OSB/3

Figure 57 : Recalage du modèle sur Fser, k – Panneau OSB/3

7.5 Panneaux d'OSB/4

7.5.1 Calage en valeurs moyennes

Figure 58 : Calage du modèle sur Fmax,moy – Panneau OSB/4

Figure 59 : Calage du modèle sur Fser, moy – Panneau OSB/4

Tout comme le panneau OSB/3, on observe toujours ce même effet « plateau » des résistances pour les fortes épaisseurs dû à la résistance au poinçonnement « pur ».

Figure 60 : Calage du modèle sur Rmoy – Panneau OSB/4

7.5.2 Recalage en valeurs caractéristiques

Figure 61 : Recalage du modèle sur Fmax,k – Panneau OSB/4

Figure 62 : Recalage du modèle sur Fser,k – Panneau OSB/4

7.6 Panneaux de contreplaqué

7.6.1 Calage en valeurs moyennes

Figure 64 : Calage du modèle sur Fser, moy – Panneau CTP

Contrairement aux panneaux de particules et d'OSB, l'effet « plateau » des résistances est peu marqué excepté pour les fortes épaisseurs. Pour le panneau

contreplaqué, le mode de rupture principalement observé est la rupture en flexion des plis successifs. Par contre, on observe une forte variabilité sur la force générant le 1^{er} endommagement. Ceci conduira à des valeurs plus conservatrices lors du recalage du modèle.

Figure 65 : Calage du modèle sur Rmoy – Panneau CTP

7.6.2 Recalage en valeurs caractéristiques

Figure 66 : Recalage du modèle sur Fmax,k – Panneau CTP

Figure 67 : Recalage du modèle sur Fser, k – Panneau CTP

7.7 Construction des tables de performance

L'exploitation des modèles déterministes prédictifs présentés précédemment permet de construire des « tables de performance » pour l'ensemble des panneaux retenues et pour les épaisseurs et portées intermédiaires. Les tableaux ci-après présentent des tables pour des épaisseurs usuelles et pour différentes portées.

Tableau 53 : Table de valeurs – Panneau P4									
	Entraxe (mm)	375	400	450	500	550	600	650	675
E	19 mm	3,53	3,40	3,14	2,88	2,75	2,62		
rser,k I∠N	22 mm	4,48	4,42	4,31	4,20	4,12	4,04	2,99	
KIN	25 mm	4,58	4,52	4,40	4,28	4,09	3,80	3,50	3,36
E	19 mm	3,51	3,43	3,28	3,12	2,98	2,84		
rmax,k ⊾N	22 mm	4,29	4,27	4,24	4,20	4,15	4,10	3,15	
	25 mm	4,21	4,17	4,09	4,01	3,89	3,72	3,54	3,46
Б	19 mm	777	715	590	474	401	354		
K _{mean} ∠N	22 mm	1084	1029	923	802	658	530	441	
NIN	25 mm	1436	1356	1172	988	838	718	612	560

7.7.1 Panneaux de particules P4
Tableau 34 . Table de Valeurs – Parineau PS									
	Entraxe (mm)	375	400	500	600	700	800	900	1000
	12		1,99	1,82	1,65	1,48	1,41	1,34	1,28
	15		2,79	2,55	2,38	2,21	2,14	2,08	1,89
F _{ser,k}	19	3,85	3,79	3,55	3,32	3,17	3,06	2,85	
kN	22	4,71	4,65	4,41	4,17	3,92	3,72	3,51	3,31
	25	5,15	5,09	4,85	4,64	4,56	4,36	4,15	3,77
	30	5,88	5,86	5,78	5,70	5,61	5,25	4,86	4,47
	12		1,96	1,81	1,66	1,50	1,43	1,36	1,29
	15		2,71	2,37	2,22	2,06	1,99	1,92	1,78
F _{max,k}	19		3,71	3,34	2,98	2,81	2,73	2,58	2,43
kN	22	4,54	4,45	4,09	3,73	3,36	3,21	3,07	2,92
	25	5,01	4,92	4,56	4,23	4,02	3,86	3,72	3,40
	30	5,79	5,74	5,53	5,32	5,10	4,79	4,47	4,14
	12		305	203	151	115	89	80	55
	15		512	330	253	202	164	145	107
R _{mean}	19		849	609	404	315	252	210	159
kN	22	1101	1047	808	579	418	337	284	223
	25	1177	1123	868	672	565	486	418	299
	30	1235	1195	1055	939	830	702	550	394

7.7.1 Panneaux de particules P5

Tableau 54 : Table de valeurs – Panneau P5

7.7.1 Panneaux d'OSB/3

Tableau 55 : Table de valeurs – Panneau OSB/3

	Entraxe (mm)	375	400	500	600	700	800	900	1000	1100	1200
	12	1,68	1,66	1,58	1,49	1,41	1,33	1,28	1,24	1,20	1,16
E	16	2,17	2,18	2,22	2,26	2,28	2,24	2,20	2,16	2,09	2,02
rser,k ∠N	18	2,78	2,77	2,70	2,63	2,56	2,49	2,42	2,38	2,35	2,32
NIN	22	3,77	3,76	3,70	3,63	3,57	3,50	3,41	3,31	3,21	3,18
	25	4,52	4,50	4,44	4,38	4,31	4,25	4,15	4,05	3,95	3,86
	12	1,84	1,82	1,73	1,64	1,55	1,46	1,41	1,36	1,31	1,26
E	16	2,63	2,63	2,59	2,56	2,53	2,47	2,41	2,34	2,27	2,20
rmax,k	18	3,31	3,29	3,18	3,08	2,97	2,87	2,77	2,70	2,65	2,60
NIN	22	4,30	4,28	4,19	4,11	4,01	3,90	3,79	3,67	3,54	3,48
	25	5,03	5,01	4,93	4,84	4,76	4,68	4,55	4,43	4,31	4,18
	12	322	305	239	180	131	92	67	56	52	46
Б	16	519	495	391	294	216	167	139	119	102	88
	18	731	703	586	471	363	269	194	144	114	98
NIN	22	875	841	701	567	452	349	273	229	197	168
	25	978	943	798	652	518	409	332	283	251	225

	Entraxe (mm)	400	500	600	700	800	900	1000	1100	1200
	12	1,85	1,73	1,61	1,49	1,38	1,38	1,38	1,38	1,38
E	16	2,93	2,82	2,66	2,50	2,34	2,34	2,31	2,24	2,18
Fser,k ⊮N	18	3,47	3,31	3,15	2,99	2,83	2,76	2,70	2,63	2,57
NIN	22	3,69	3,53	3,42	3,38	3,34	3,28	3,22	3,22	3,21
	25	3,89	3,85	3,81	3,77	3,73	3,72	3,72	3,71	3,70
	12	2,10	1,96	1,82	1,68	1,55	1,54	1,53	1,52	1,51
E	16	3,31	3,17	2,98	2,79	2,59	2,58	2,53	2,46	2,38
rmax,k	18	3,90	3,70	3,51	3,31	3,12	3,04	2,96	2,89	2,81
NIN	22	4,24	4,05	3,90	3,81	3,73	3,65	3,58	3,54	3,50
	25	4,53	4,44	4,36	4,27	4,18	4,14	4,10	4,06	4,02
	12	398	322	246	171	97	50	41	49	50
Б	16	669	568	440	302	194	142	116	115	110
	18	775	637	487	347	241	185	165	159	145
NIN	22	953	794	641	488	374	325	288	247	207
	25	1077	910	734	577	467	398	343	294	244

7.7.1 Panneaux d'OSB/4

Tableau 56 : Table de valeurs – Panneau OSB/4

7.7.1 Panneaux de contreplaqué

	Entraxe (mm)	400	500	600	700	800	900	1000	1100	1200
	12	1,61	1,58	1,55	1,53	1,50	1,45	1,40	1,35	1,31
F	15	2,15	2,12	2,09	2,03	1,97	1,93	1,88	1,85	1,82
⊂ser,k	19	3,01	2,95	2,89	2,83	2,66	2,63	2,61	2,58	2,52
KIN	22	3,98	3,92	3,86	3,58	3,30	3,27	3,24	3,17	3,08
	27	5,50	5,22	4,93	4,64	4,36	4,27	4,19	4,10	4,01
	12	2,29	2,18	2,07	1,96	1,84	1,79	1,74	1,69	1,64
E	15	3,13	3,02	2,88	2,66	2,45	2,39	2,34	2,28	2,21
Fmax,k	19	4,35	4,13	3,91	3,69	3,32	3,26	3,19	3,13	3,01
NIN	22	5,61	5,39	5,17	4,67	4,16	4,09	4,02	3,87	3,69
	27	7,58	7,07	6,56	6,05	5,54	5,36	5,18	5,00	4,82
	12	378	310	242	173	104	60	52	55	45
R _{mean}	15	543	455	372	268	162	98	74	78	69
	19	814	691	561	429	288	210	184	171	129
NIN	22	1178	1040	871	629	425	344	300	242	187
	27	1756	1464	1132	829	621	505	420	348	270

Tableau 57 : Table de valeurs – Panneau CTP

8. Exploitation des modèles

8.1 Propositions de critères

Afin de préparer une base de travail pour un futur document normatif, il est présenté ici une première exploitation des modèles obtenus. Pour cela, il convient de proposer des critères d'exigences vis-à-vis des trois propriétés de résistance maximale, résistance de service et raideur apparente sous charge concentrée.

Concernant les résistances, il est proposé ici de retenir les critères informatifs donnés dans la norme EN 12871, à savoir :

• Pour la résistance de service Fser,k

$$F_{ser,k} \ge Q_k$$

• Pour la résistance ultime F_{max,k}

$$\frac{k_{mod}.F_{max,k}}{\gamma_M} \ge \gamma_Q.k_{red}.Q_k$$

Où

Q_k est la charge concentrée appliquée, fonction de la catégorie d'usage du plancher

k_{mod} est le coefficient de modification selon EN 1995-1-1

 γ_M est le coefficient partiel pour les matériaux selon EN 1995-1-1

k_{red} est le coefficient de réduction selon EN 12871

 γ_Q est le coefficient partiel pour les actions selon EN 1990

Concernant la raideur apparente sous charge concentrée, il est proposé un critère unique de raideur minimale telle que :

• Pour les planchers :

$$R_{mean} \ge 500 N/mm$$

8.2 Exemples de portées maximales obtenues

Nous considérons les hypothèses suivantes :

- Catégorie d'usage du plancher :
- résidentiel et assimilés selon EN 1991-1-1, soit Q_k = 2 kN

Coefficient partiel pour les matériaux selon EN 1995-1-1 :

- Particules P4 et P5 : $\gamma_M = 1,3$
- OSB/3 et 4 : γ_M = 1,2
- Contreplaqué : $\gamma_M = 1,2$

Coefficient de modification selon EN 1995-1-1 en considérant la charge concentrée comme une action « moyen terme » :

- Particules P4 et P5 en classe de service 1 : k_{mod} = 0,65
- Particules P5 en classe de service 2 : $k_{mod} = 0,45$
- OSB/3 et 4 en classe de service 1 : k_{mod} = 0,70
- OSB/3 et 4 en classe de service 2 : k_{mod} = 0,55
- Contreplaqué en classe de service 1 et 2 : k_{mod} = 0,8

Coefficient de modification selon EN 1995-1-1 en considérant la charge concentrée comme une action « court terme » :

- Particules P4 et P5 en classe de service 1 : k_{mod} = 0,85
- Particules P5 en classe de service 2 : k_{mod} = 0,60
- OSB/3 et 4 en classe de service 1 : k_{mod} = 0,90
- OSB/3 et 4 en classe de service 2 : k_{mod} = 0,70
- Contreplaqué en classe de service 1 et 2 : k_{mod} = 0,90

Coefficient de réduction selon EN 12871 :

• k_{red} = 0,7

Coefficient partiel pour les actions selon EN 1990 :

γ_Q = 1,5

Sur la base de ces hypothèses et des critères proposés, les portées maximales obtenues sont déterminées et présentées ci-après. Les critères sont vérifiés avec une tolérance de 3%.

Épaisseur Panneau (mm)	Contreplaqué	Particules P5	Particules P4	OSB/3	OSB/4
15	45 cm				
16					
18				35 cm	60 cm
19	65 cm	35 cm			
22	75 cm	48 cm	52 cm	65 cm	65 cm
25		62 cm	40 cm	72 cm	77 cm
27	90 cm				
30		92 cm			

Tableau 58 : Charge concentrée « moyen terme », Classe de service 1

Tableau 59: Charge concentrée « moyen terme », Classe de service 2

Épaisseur Panneau (mm)	Contreplaqué	Particules P5	OSB/3	OSB/4
15	45 cm			
16				
18				
19	65 cm			
22	75 cm		35 cm	35 cm
25			72 cm	50 cm
27	90 cm			
30				

Épaisseur Panneau (mm)	Contreplaqué	Particules P5	Particules P4	OSB/3	OSB/4
15	45 cm				
16				35 cm	55 cm
18				58 cm	60 cm
19	65 cm	55 cm	48 cm		
22	75 cm	65 cm	60 cm	65 cm	70 cm
25		80 cm	68 cm	72 cm	78 cm
27	90 cm				
30		92 cm			

Tableau 60: Charge concentrée « court terme », Classe de service 1

Tableau 61 : Charge concentrée « court terme », Classe de service 2

Épaisseur Panneau (mm)	Contreplaqué	Particules P5	OSB/3	OSB/4
15	45 cm			
16				35 cm
18			35 cm	60 cm
19	65 cm			
22	75 cm	40 cm	65 cm	70 cm
25		52 cm	72 cm	78 cm
27	90 cm			
30		90 cm		

On note une meilleure cohérence des portées avec l'hypothèse d'action de court terme retenue pour la charge concentrée. Cette hypothèse semble mieux adaptée et conduit à des portées relativement cohérentes en comparaison de l'ancien tableau qui était proposé dans la version du DTU 51.3 de 1993.

À titre de comparaison, le tableau du DTU 51.3 de 1993 est rappelé ci-après.

Épaisseur Panneau (mm)	Contreplaqué	Particules P5	Particules P4
12	38 cm		
15	48 cm		
19	60 cm	50 cm	46 cm
22	70 cm	57 cm	51 cm
25	80 cm	65 cm	58 cm
30		74 cm	66 cm

Tableau 62 : Tableau DTU 51.3 : 1993

9. Conclusion

Le retrait du tableau de portée maximale lors de la révision du DTU 51.3 relatif aux ouvrages de planchers à base de bois constitue un manque important qu'il convient de combler en prenant en compte la nouvelle approche de justification mécanique introduite par les Eurocodes, à savoir la justification sous charge concentrée en fonction de la catégorie d'usage du plancher, ainsi que l'intégration de nouveaux types de panneaux tels que l'OSB.

Il n'existe pas actuellement de méthodes de calcul fiables et calibrées pour effectuer la justification sous charge concentrée qui nécessite alors d'exploiter une voie expérimentale. Pour cela, la norme NF EN 12 871 introduit une méthode d'essai afin de caractériser le comportement mécanique des panneaux à base de bois vis à vis d'une charge concentrée.

Cette approche nécessite donc d'obtenir une base de données expérimentales des différents types de panneaux à base de bois selon différentes mises en œuvre.

L'objectif de cette étude est d'établir une telle base en menant une large campagne d'essais selon un plan d'expérience permettant de couvrir un large domaine d'emploi.

Cette base pourra ensuite alimenter le travail normatif dont le but est de proposer une justification des panneaux par des règles de moyens (tableaux de dimensionnement) adaptées aux cas courants retenus dans le domaine d'emploi.

L'ensemble des résultats d'essais est présenté, ainsi que la proposition de modèles prédictifs permettant de couvrir le domaine d'emploi proposé par les professionnels et établis à partir des résultats expérimentaux traités selon la norme EN 12871.

Cette étude étant une étude prénormative, au-delà de son objectif, des propositions de critères sont avancées afin d'établir des premiers tableaux de portées qui peuvent constituer une base de départ pour alimenter la future commission de normalisation.

Ces premiers résultats indiquent que d'une manière générale, les dispositions constructives usuelles ne devraient pas subir de changement important (du moins sur la base des propositions de critères retenus dans ce document en classe de service 1). On notera cependant que la distinction de la classe de service introduite par l'Eurocode 5 (NF EN 1995-1-1) conduit à des changements importants pour certains types de panneaux (principalement particules P5).

Compte tenu de la méthode de calage/recalage des modèles prédictifs retenue, la variabilité élevée des résultats observée sur certaines configurations peut conduire à des valeurs très sécuritaires sur d'autres configurations pour un même type de panneau. Dans le cadre du travail normatif à venir, il conviendra d'optimiser si possible les modèles pour certains types de panneaux. Ceci devrait permettre d'améliorer la cohérence d'ensemble des tables de performance présentées.